Will Murray's Differential Equations, XI. Review of power series1

XI. Review of power series

Lesson Overview

- A function $f(x)$ has a Taylor Series expansion around a point x_{0} :

$$
T S(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \text { where } a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

If $x_{0}=0$, it's also called Maclaurin Series.

- Common Maclaurin Series to remember from calculus:

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}, \text { for }|x|<1
\end{aligned}
$$

Any power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has a radius of convergence R around x_{0}, i.e. when you plug in values for x satisfying $\left|x-x_{0}\right|<R$, it converges. It might or might not converge at the endpoints $x=x_{0}-R, x=x_{0}+R$.

Extreme cases:

- $R=0$. It only converges for $x=x_{0}$.
- $R=\infty$. Then it converges for all $x \in \mathbb{R}$.
- To find the radius of convergence, we usually use the Ratio Test: A series converges if

$$
\lim _{n \rightarrow \infty}\left|\frac{\operatorname{term}_{n+1}}{\operatorname{term}_{n}}\right|<1
$$

- We must check the endpoints separately (using a non-Ratio test).

Example I

Identify the following power series as an elementary function:

$$
\begin{aligned}
& 1+3 x^{2}+\frac{9}{2} x^{4}+\frac{9}{2} x^{6}+\frac{27}{8} x^{8}+\cdots \\
= & 1+3 x^{2}+\frac{9}{2} x^{4}+\frac{27}{6} x^{6}+\frac{81}{24} x^{8}+\cdots \\
= & 1+3 x^{2}+\frac{\left(3 x^{2}\right)^{2}}{2!}+\frac{\left(3 x^{2}\right)^{3}}{6}+\frac{\left(3 x^{2}\right)^{4}}{24}+\cdots \\
= & e^{3 x^{2}}
\end{aligned}
$$

Example II

Find the Maclaurin Series for $f(x)=\ln (1-x)$.
Lesson from Calc II: Writing down $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots$ is usually the worst way to find a Taylor Series.
Instead, note that

$$
\begin{aligned}
\ln (1-x) & =-\int \frac{d x}{1-x} \\
& =-\int\left(1+x+x^{2}+x^{3}+\cdots\right) d x \\
& =C-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots
\end{aligned}
$$

Plug in $x=0$ to get $C=0$.
So $a_{n}=0$ for $n=0, a_{n}=-\frac{1}{n}$ for $n=1,2,3, \ldots$.

$$
\ln (1-x)=\sum_{n=1}^{\infty}\left(-\frac{x^{n}}{n}\right)
$$

Example III

Find the interval of convergence for the Maclaurin Series for $\ln (1-x)$.
Use the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{-\frac{x^{n+1}}{n+1}}{-\frac{x^{n}}{n}}\right|=|x|<1
$$

So it converges for $|x|<1$. Ratio $R=1$ around $x_{0}=0$.

Check the endpoints separately (using a non-Ratio test): $x=1$ gives $-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\cdots$,
which diverges (Harmonic Series/p-series). $x=-1$ gives $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$, which converges (Alternating Series Test).
So this series converges for $-1 \leq x<1$, or $[-1,1)$. This was predictable since $\ln (1-x)$ blows up at $x=1$.

Example IV

Use power series to solve the following integral:

$$
\int e^{x^{2}} d x
$$

$\int e^{x^{2}} d x$ can not be done by any integration technique you learned in Calc II (substitution, parts, partial fractions, etc.). That's because there is no "elementary function" whose derivative is $e^{x^{2}}$. But we can find a series that works:

$$
\begin{aligned}
\int e^{x^{2}} d x & =\int\left(1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots\right) d x \\
& =C+x+\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}+\frac{x^{7}}{7 \cdot 3!}+\cdots
\end{aligned}
$$

Alternately,

$$
\int\left(\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}\right) d x=C+\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) n!} .
$$

Example V

Suppose $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find power series expressions for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ and shift the indices of summation so that they start at $n=0$.

$$
\begin{aligned}
y^{\prime}(x)= & \sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad\left\{\begin{array}{l}
\text { Omit the } n=0 \text { term } \\
\text { because it is } 0 \text { anyway. }
\end{array}\right\} \\
= & a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \quad\left\{\begin{array}{l}
\text { Shift the index of } \\
\text { summation by } 1 .
\end{array}\right\} \\
= & \sum_{n=0}^{\sum_{n=1}^{\infty}(n+1) a_{n+1} x^{n+1}} \begin{array}{l}
\left\{\begin{array}{l}
\text { Mnemonic: If you lower } \\
\text { the } n \text { in the index by } 1, \text { then } \\
\text { raise the } n \text { 's in the formula } \\
\text { by } 1 .
\end{array}\right. \\
y^{\prime \prime}= \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \quad\left\{\begin{array}{l}
\text { Omit the } n=0 \text { and } n=1 \\
\text { terms because they are } 0 .
\end{array}\right\} \\
=
\end{array} \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \quad\{\text { Shifting } n \text { by } 2 .
\end{aligned}
$$

