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XI. Review of power series

Lesson Overview

• A function f(x) has a Taylor Series
expansion around a point x0:

TS(x) =
∞∑
n=0

an(x−x0)
n, where an =

f (n)(x0)

n!

If x0 = 0, it’s also called Maclaurin Series.

• Common Maclaurin Series to remember
from calculus:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

1

1− x
= 1 + x + x2 + x3 + · · ·

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

1

1− x
= 1 + x + x2 + x3 + · · · =

∞∑
n=0

xn, for |x| < 1
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Any power series
∞∑
n=0

an(x − x0)
n has a radius of

convergence R around x0, i.e. when you plug in
values for x satisfying |x− x0| < R, it converges.
It might or might not converge at the endpoints
x = x0 −R, x = x0 + R.

Extreme cases:

• R = 0. It only converges for x = x0.

• R =∞. Then it converges for all x ∈ R.

• To find the radius of convergence, we usually
use the Ratio Test: A series converges if

lim
n→∞

∣∣∣∣termn+1

termn

∣∣∣∣ < 1.

• We must check the endpoints separately
(using a non-Ratio test).

Example I

Identify the following power series as an
elementary function:

1 + 3x2 +
9

2
x4 +

9

2
x6 +

27

8
x8 + · · ·

= 1 + 3x2 +
9

2
x4 +

27

6
x6 +

81

24
x8 + · · ·

= 1 + 3x2 +
(3x2)2

2!
+

(3x2)3

6
+

(3x2)4

24
+ · · ·

= e3x
2
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Example II

Find the Maclaurin Series for f(x) = ln(1− x).

Lesson from Calc II: Writing down
f(x), f ′(x), f ′′(x), . . . is usually the worst way to
find a Taylor Series.

Instead, note that

ln(1− x) = −
∫

dx

1− x

= −
∫

(1 + x + x2 + x3 + · · · ) dx

= C − x− x2

2
− x3

3
− · · ·

Plug in x = 0 to get C = 0.

So an = 0 for n = 0, an = − 1
n

for n = 1, 2, 3, . . ..

ln(1− x) =
∞∑
n=1

(
−xn

n

)

Example III

Find the interval of convergence for the Maclaurin
Series for ln(1− x).

Use the Ratio Test:

lim
n→∞

∣∣∣∣∣−xn+1

n+1

−xn

n

∣∣∣∣∣ = |x| < 1

So it converges for |x| < 1. Ratio R = 1 around
x0 = 0.

Check the endpoints separately (using a
non-Ratio test): x = 1 gives −1− 1

2
− 1

3
− 1

4
− · · ·,
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which diverges (Harmonic Series/p-series).
x = −1 gives 1− 1

2
+ 1

3
− 1

4
+ · · ·, which converges

(Alternating Series Test).

So this series converges for −1 ≤ x < 1 , or

[−1, 1) . This was predictable since ln(1 − x)

blows up at x = 1.

Example IV

Use power series to solve the following integral:∫
ex

2

dx

∫
ex

2
dx can not be done by any integration

technique you learned in Calc II (substitution,
parts, partial fractions, etc.). That’s because
there is no “elementary function” whose derivative
is ex

2
. But we can find a series that works:∫

ex
2

dx =

∫ (
1 + x2 +

x4

2!
+

x6

3!
+ · · ·

)
dx

= C + x +
x3

3
+

x5

5 · 2!
+

x7

7 · 3!
+ · · ·

Alternately,∫ ( ∞∑
n=0

x2n

n!

)
dx = C +

∞∑
n=0

x2n+1

(2n + 1)n!
.

Example V

Suppose y(x) =
∞∑
n=0

anx
n. Find power series

expressions for y′(x) and y′′(x) and shift the
indices of summation so that they start at n = 0.
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y′(x) =
∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1

{
Omit the n = 0 term
because it is 0 anyway.

}
= a1 + 2a2x + 3a3x

2 + · · ·
{

Shift the index of
summation by 1.

}
=

∞∑
n=0

(n + 1)an+1x
n+1


Mnemonic: If you lower
the n in the index by 1, then
raise the n’s in the formula
by 1.


y′′ =

∞∑
n=0

n(n− 1)anx
n−2

{
Omit the n = 0 and n = 1
terms because they are 0.

}

=
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n + 2)(n + 1)an+2x
n {Shifting n by 2. }


